BHAI GURDAS INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Computer Science and Engineering

LESSON PLAN

Subject Name: Computer Organization & Architecture Subject Code: - BTES401-18

Year: -2023 Semester: - 4TH

Lect	Unit	Date/Week	Topic	Teaching Aids	References
ure					
No.					
1	1	10 Days	Introduction about CPU, Memory, Contol	Projector,	Text Book,
			Unit	chalk, green	Notes
2			Instruction set architecture of a CPU,	board, duster	
			registers, instruction cycle,RTL	Text Book ,	
			interpretation of instructions	Notes	
3			Addressing Modes, instruction set		
4			Case study-Instruction set of 8085		
			microprocessor		
5			Signed number representation, fixed,		
			character and floating point representations		
6			Computer arithmetic- integer addition and		
			subtraction		
7			Ripple carry adder, carry look-ahead adder		
8			Multiplication-shift andad, Booth multiplier,		
			carry save multiplier etc.		
9			Division restroing and non restoring		
			techniques		
10			Floating point arithmetic		
11	2	12 Days	CPU control unit design :Hardwired		
12			Micro programs design approaches		
13			Case study of simple hypothetical CPU		
14			Memory System Design :Semiconductor		
			memory technologies, memory organization		
15			Input/Output subsystems,		
16			I/O device interface, I/O transfers		
17			Program controlled, interrupt driven and		
			DMA,		
18			Software interrupts and exceptions		
19			Programs and processes		
20			Role of interrupts in process state		
			transitions		
21			I/O device interfaces-SCII, USB		
22			Privileged and non privileged instructions		

23	3	10 Days	Introduction about pipelining		
24	1	10 Days	Basic concepts of pipelining	-	
	_			-	
25	_		Throughput and speedup	-	
26			Pipeline hazards		
27			Introduction to Parallel processors		
28			Working of parallel processors		
29			Types of parallel processors		
30			Concurrent access to memory		
31			Cache memory introduction		
32			Cache Coherency		
33	4	10 Days	Memory interleaving		
34			Concept of Hierarchical memory		
			organization		
35			Cache memory		
36			Cache size weds block size		
37			Mapping functions		
38			Replacement algorithms		
39			Write Up policies	1	
40	1		Concept of Primary memory, uses and types	1	
41	1		Concept of Secondary memory, uses and	1	
			types		
42			Introduction about SCII, USB		