BHAI GURDAS INSTITUTE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF APPLIED SCIENCES

LESSON PLAN

Subject Name: - Electromagnetism 18

Year: - 2022-23

Semester: - 2nd

Subject Code: - BTPH-103-

Lecture	Unit	Date/ Week	Торіс	Teaching Aids	Reference
Lecture :1	UNIT-I	WEEK-1	Introduction to electric field and electric potential.	Chalk Board	Engineering physics by Dr. Rakesh Dogra
Lecture :2			Distribution of charges and divergence and curl of electric field	Presentation	
Lecture :3			Laplace's and Poisson's equation for electric potential.	Chalk Board	
Lecture :4			Numerical problems	Chalk Board	
Lecture :5		WEEK-2	Uniqueness theorem with examples	Presentation	Engineering physics by Dr. Rakesh Dogra
Lecture :6			Boundary conditions of electric field	Chalk Board	
Lecture :7			Average energy density of electric field	Chalk Board	
Lecture :8			Numerical problems	Chalk Board	
Lecture :9		WEEK-3	Electric dipole and electric dipole moment	Chalk Board	S Chanda Engineering Physics S Chanda
Lecture :10	-		Polarization of dielectric slab	Chalk Board	
Lecture :11	-		Electric displacement with examples	Presentation	
Lecture :12			Numerical problems	Chalk Board	
Lecture :13	-		Charge in front of a dielectric slab	Presentation	
Lecture :14			Problem discussion	Chalk Board	Engineering
Lecture :15	-		Numerical problems	Chalk Board	Physiics
Lecture :16	UNIT-II	WEEK-5	Introduction to Biot savart's law and its derivation	Presentation	Engineering physics by
Lecture :17			Divergence and curl of magnetic field	Presentation	Dr. Rakesh
Lecture :18	-		Concept of vector potential, magnetization	Presentation	Dogra
Lecture :19	-		Numerical problems	Chalk Board	
Lecture :20		WEEK-6	Magnetization of bound current and magnetic field	Presentation	Electricity and
Lecture :21			Boundary conditions of magnetization and magnetic field	Presentation	Magnetism by Dr. A.K.
Lecture :22			Magnetic susceptibility and magnetic field due to bar magnet	Chalk Board	Sikri
Lecture :23			Numerical problems	Chalk Board	
Lecture :24		WEEK-7	Concept of paramagnetic, diamagnetic and ferromagnetic substances	Chalk Board	Engineering physics by
Lecture :25			Hysteresis loop and B-H curve	Presentation	Dr. Rakesh
Lecture :26]		Numerical problems	Chalk Board	Dogra
Lecture :27	UNIT-III	WEEK-8	Introduction and derivation of Faraday's laws of electromagnetic induction	Chalk Board	Engineering physics by
Lecture :28	1		Mathematical formation of motional EMF	Presentation	Dr. Rakesh
Lecture :29	1		Brief information of Lenz law	Presentation	Dogra
Lecture :30	1		Numerical problems	Chalk Board	Electricity
Lecture :31	-	WEEK-9	Problem discussion	Chalk Board	and
Lecture :32			Experimental verification of lenz law	Chalk Board	Magnetism

Lecture :33			Some important questions related to lenz law and	Chalk Board	by Dr. A.K.
			faraday's law		Sikri
Lecture :34			Energy flow of electromagnetic induction	Chalk Board	
Lecture :35			Numerical problems	Chalk Board	
Lecture :36		WEEK-10	Applications of faraday's law of electromagnetic	Chalk Board	Engineering
			induction		physics by
Lecture :37			Energy stored in magnetic field	Chalk Board	Dr. Rakesh
Lecture :38			Equation of continuity for current densities		Dogra
Lecture :39			Numerical problems	Chalk Board	
Lecture :40		WEEK-11	Modification of equation of continuity	Chalk Board	S Chanda
Lecture :41			Maxwell equations in conducting medium	Chalk Board	Engineering
Lecture :42			Maxwell equations in non-conducting medium	Presentation	Physics
Lecture :43			Numerical problems	Chalk Board	
Lecture :44	UNIT-IV	WEEK-12	Pointing vector and pointing theorem	Chalk Board	Engineering
Lecture :45			Some important questions related to Maxwell	Chalk Board	physics by
			equations		Dr. Rakesh
Lecture :46			Introduction of electromagnetic waves	Chalk Board	Dogra
Lecture :47			Numerical problems	Chalk Board	
Lecture :48		WEEK-13	Wave equation for EM waves in free space	Chalk Board	
Lecture :49			Wave equation for EM waves in conducting	Chalk Board	
			medium		
Lecture :50			General solution of uniform plane wave	Chalk Board	
Lecture :51			Numerical problems	Chalk Board	
Lecture :52		WEEK-14	Transverse nature of EM wave	Chalk Board	Engineering
Lecture :53			Polarization and its types	Chalk Board	physics by
Lecture :54			Reflection of EM waves in non conducting	Chalk Board	Dr. Rakesh
			medium		Dogra
Lecture :55			Numerical problems	Chalk Board	
Lecture :56		WEEK-15	Transmission coefficient of EM waves in non	Chalk Board	Engineering
			conducting medium		physics by
Lecture :57			Average energy density of EM wave	Chalk Board	Dr. Rakesh
Lecture :58			Problem Discussion	Chalk Board	Dogra
Lecture: 59			Previous year question paper discussion	Chalk Board	